
Software Engineering

and Architecture

Quality Attributes

Good or Bad?

• When I was taught OO programming and design, there

was often statements like

• ”This is not good OO design”

• Which was more or less equal to the statement

– I do not like it…

• Theological statement 

CS@AU Henrik Bærbak Christensen 2

What does “good” mean?

• Question: Is this little C program an example of good or

bad software?

• Exercise 1: Argue that this is a good program!

• Exercise 2: Argue that this is a bad program !

int a[1817];main(z,p,q,r){for(p=80;q+p-80;p-=2*a[p])for(z=9;z--
;)q=3&(r=time(0) +r*57)/7,q=q?q-1?q-2?1-p%79?-1:0:p%79-

77?1:0:p<1659?79:0:p>158?-79:0,q?!a[p+q*2
]?a[p+=a[p+=q]=q]=q:0:0;for(;q++-1817;)printf(q%79?"%c":"%c\n","

#"[!a[q-1]]);}

CS@AU Henrik Bærbak Christensen 3

(What does the C program do?)

CS@AU Henrik Bærbak Christensen 4

• Process

– Paste string

into file ‘m.c’

– Install ‘gcc’

– gcc m.c

– ./a.out

– Done…

The need for measuring

• The server is highly available...

• My software is really easy to read! Self-explantory

• Our high performance server will...

• These are simply claims ☺

• Actual measurements on well defined scale is better...

CS@AU Henrik Bærbak Christensen 5

Quality Attributes

• The problem about ”good” or ”bad” is that they are

subjective measures...

• We need to measure our software. This requires

– that we define the aspects/qualities we measure

– that we agree on some kind of scale: a metric

• Quality attributes (da: kvalitets-attributter)

CS@AU Henrik Bærbak Christensen 6

Measuring quality

Quality Attribute

Metric

Measurement

Choose alternatives

Quality Framework

CS@AU Henrik Bærbak Christensen 7

Performance

Modifiability

Usability

’Quality communities’

• One aspects of qualities is that most of them have dedicated

research communities associated:

– performance freaks (algorithm people, database, ...)

– usability freaks (HCI – human computer interface)

– security freaks

– cost freaks (managers ☺)

– reusability freaks (pattern community ☺)

• ...which has lead to lack of common vocabulary…

– user input, attack, event, failures, are all stimulus

• We need to provide common ground

CS@AU Henrik Bærbak Christensen 8

SAiP’s Contribution

• The book Software Architecture in Practice has
defined a conceptual framework that allow
different architecturally qualities to be expressed
in a similar form: A quality framework

• Quality Attributes:
Set of qualities to consider

• Quality Metric:

A technique for measuring them

CS@AU Henrik Bærbak Christensen 9

Quality framework (Bass et al.)

• System quality attributes

– Availability

– Modifiability

– Performance

– Security

– Testability

– Usability

– Integrability

– Deployability

– Energy Efficiency

– Safety

• Business qualities

– Time to market

– Cost

– Projected lifetime

– Targeted market

– Roll-out schedule

– Integration with legacy sys.

• Architectural qualities

– Conceptual integrity

– Correctness and

completeness

– BuildabilityCS@AU Henrik Bærbak Christensen 10

The System Qualities

• Availability

– Concerned with the probability that the system will be

operational when needed

• Modifiability

– Concerned with the ease with which the system supports

change

• Performance

– Concerned with how long it takes the system to respond when

an event occurs

CS@AU Henrik Bærbak Christensen 11

The System Qualities

• Security

– Concerned with the systems ability to withstand

attacks/threats

• Testability

– Concerned with the ease with which the software can be made

to demonstrate its faults

• Usability

– Concerned with how easy it is for the user to accomplish a

desired task and the kind of user support the system provides

CS@AU Henrik Bærbak Christensen 12

The System Qualities

• Deployability

– Concerned with the ease at which the system can be allocated

to an environment for execution

• Energy Efficiency

– Concerned with the energy required for the system to perform

its tasks

• Safety

– Concerned with the systems ability to avoid states that lead to

damage, injury, or loss of life to actors in environment

CS@AU Henrik Bærbak Christensen 13

Exercise

• System quality attributes

– Availability

– Modifiability

– Performance

– Security

– Testability

– Usability

– Deployability

– Energy Efficiency

– Safety

CS@AU Henrik Bærbak Christensen 14

• Business qualities

– Time to market

– Cost

– Projected lifetime

– Targeted market

– Roll-out schedule

– Integration with legacy sys.

Which of these will have the
greatest impact on your
professional and personal lives?

“We want them all”

Qualities in conflict

The conflict of qualities

• Many qualities are in direct conflict – they must be

balanced !

– modifiability and performance

• many delegations costs in execution speed – and memory footprint

– cost and reusability

• highly flexible software costs time, effort, and money

– security and availability

• availability through redundancy – increase opportunities of attack

– modifiability and energy efficiency

CS@AU Henrik Bærbak Christensen 16

Disclaimer: Single experiment! Do not trust

Design Patterns in Perspective

Examples of Good turning Bad

Iteration

• In a distributed system, the clients need to iterate over

all order lines in a order object...

• Using Broker – the code looks exactly the same even

when the Order and each OrderLine objects are on the

server side !!! Great!

• Iterator is a nice, flexible, design pattern ☺

CS@AU Henrik Bærbak Christensen 18

The sequence diagram

• All is fine ...

CS@AU Henrik Bærbak Christensen 19

... but

• Let us consider the deployment of objects

CS@AU Henrik Bærbak Christensen 20

... what about performance ?

• Message-call is really expensive over a network

– 2018 data on TeleMed:

• Between a factor 11 to 275 times slow-down

– (depends on geography of the two machines)

• The iterator pattern produces an extreme slow-down

compared to transferring all order line objects in a single

network package !

– Modifiability/maintainability high Performance low

 CS@AU Henrik Bærbak Christensen 21

Conclusion

• We build software that has architectural quality attributes

– Availability Always working when I need it

– Modifiability Low cost to change or add features

– Performance Fast response time, no waiting for answer

– Security Authorized users only, no 3rd part

– Testability Easy to verify correctness by tests

– Usability Fast to learn, easy to use, productive

– Energy effiency Get must work done for least Watts

– …

• We have to evaluate which are important in which contexts and then

focus our efforts to achieve them in the best balance

– (Sometimes flexibility/patterns/frameworks are not the way to go!)

Quality Attribute Scenarios

Measuring QAs

QaS: A Writing Template

24

• Source of stimulus. This is some
entity (a human, a computer
system, or any other actuator) that
generated the stimulus.

• Stimulus. The stimulus is a
condition that needs to be
considered when it arrives at a
system.

• Environment. The stimulus occurs
within certain conditions. The
system may be in an overload
condition or may be running when
the stimulus occurs, or some other
condition may be true.

• Artifact. Some artifact is
stimulated. This may be the whole
system or some pieces of it.

• Response. The response is the
activity undertaken after the
arrival of the stimulus.

• Response measure. When the
response occurs, it should be
measurable in some fashion so
that the requirement can be
tested.

Modifiability

• Concerned with the ease with which the system supports change

• The central QA that

SWEA is all about!

CS@AU Henrik Bærbak Christensen 25

Exercise

• ”In WoW world design phase, it should be easy to change

a landscape feature of the world”

• How to formulate

it using a QAS

– Just how easy, is easy?

CS@AU Henrik Bærbak Christensen 26

Exercise

• A UI developer wants to add a tree to part of the world

(landscape model) during design time; the modification

is made/tested in N staff minutes

• What is N???

• How does Blizzard

ensure N is low?

CS@AU Henrik Bærbak Christensen 27

Keypoint

• The keypoint of the template is

• Some source generates some events (stimuli) that

arrives at some artefact under some conditions

(environment) and must be dealt with (response) in a

satisfactory way (response measure = the architectural

requirement)

28

Discussion

• Architectural qualities need to be specified as well as

functional ones!

– It is difficult to make them measurable, yes!

– Pretty measurable is much better than not measurable

• The best is the worst enemy of the good…

• Bass et al.’s QaS is a pretty good tool!

• Modifiability is measured in the cost of the change!

– Which is basically ‘man hours’

CS@AU Henrik Bærbak Christensen 29

	Slide 1: Software Engineering and Architecture
	Slide 2: Good or Bad?
	Slide 3: What does “good” mean?
	Slide 4: (What does the C program do?)
	Slide 5: The need for measuring
	Slide 6: Quality Attributes
	Slide 7: Measuring quality
	Slide 8: ’Quality communities’
	Slide 9: SAiP’s Contribution
	Slide 10: Quality framework (Bass et al.)
	Slide 11: The System Qualities
	Slide 12: The System Qualities
	Slide 13: The System Qualities
	Slide 14: Exercise
	Slide 15: “We want them all”
	Slide 16: The conflict of qualities
	Slide 17: Design Patterns in Perspective
	Slide 18: Iteration
	Slide 19: The sequence diagram
	Slide 20: ... but
	Slide 21: ... what about performance ?
	Slide 22: Conclusion
	Slide 23: Quality Attribute Scenarios
	Slide 24: QaS: A Writing Template
	Slide 25: Modifiability
	Slide 26: Exercise
	Slide 27: Exercise
	Slide 28: Keypoint
	Slide 29: Discussion

